top of page

Associative Laws

The "Associative Laws" say that it doesn't matter how we group the numbers (i.e. which we calculate first) ...

... when we add:

(a + b) + c  =  a + (b + c)

 

... or when we multiply:

(a × b) × c  =  a × (b × c)

Commutative Laws

The "Commutative Laws" say we can swap numbers over and still get the same answer ...

... when we add:

a + b  =  b + a

 

 

... or when we multiply:

a × b  =  b × a

 

Distributive Law

The "Distributive Law" is the BEST one of all, but needs careful attention.

This is what it lets us do:

 

3 lots of (2+4) is the same as 3 lots of 2 plus 3 lots of 4

So, the 3× can be "distributed" across the 2+4, into 3×2 and 3×4

And we write it like this:

a × (b + c)  =  a × b  +  a × c

Try the calculations yourself:

  • 3 × (2 + 4)  =  3 × 6  =  18

  • 3×2 + 3×4  =  6 + 12  =  18

Either way gets the same answer.

In English we can say:

We get the same answer when we:

  • multiply a number by a group of numbers added together, or

  • do each multiply separately then add them

bottom of page